How to Automatically Understand and Integrate System-models ... and how SpecIF can help.

Oskar von Dungern, Dr.-Ing., adesso AG
Topics Today

1. The idea behind model integration ... and SpecIF
 - Purpose
 - Use-Cases
 - Principles and Approach

2. An example

3. Positioning ReqIF, OSLC and SpecIF

4. Status
Purpose: SpecIF integrates information from different sources
Diverse systems name information elements differently

Requirement
- **Object Short Text:** Crisp Naming
- **Object Text:** Longer description as formatted text, sometimes with a diagram.
- **Object Priority:** 1_high
- **Last modified on:** 2017-09-12

Demand
- **Title:** Crisp Naming
- **Description:** Longer description as formatted text, sometimes with a diagram.
- **Severity:** 1_high
- **Modified Date:** 2017-09-12
A vocabulary or ontology assigns a meaning to information elements and allows information exchange without negotiation.

Requirement

<table>
<thead>
<tr>
<th>Object Short Text:</th>
<th>Crisp Naming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object Text:</td>
<td>Longer description as formatted text, sometimes with a diagram.</td>
</tr>
<tr>
<td>Object Priority:</td>
<td>1_high</td>
</tr>
<tr>
<td>Last modified on:</td>
<td>2017-09-12</td>
</tr>
</tbody>
</table>

Demand

Title:	Crisp Naming
Description:	Longer description as formatted text, sometimes with a diagram.
Severity:	1_high
Modified Date:	2017-09-12

The prostep ivip vocabulary for ReqIF defines some attribute names.
Use-Case: Exchange requirement specs between OEM and Supplier

OEM
- Requirement-Management

Supplier
- PLM/ALM

Standard ReqIF with
- prostep ivip vocabulary

- Requirement-Management

- PLM/ALM

Model Integration with SpecIF

03.02.2020
Use-Case: Requirement Agreement using the HIS-Process

<table>
<thead>
<tr>
<th>Requirement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ReqIF.Name:</td>
<td>Crisp Naming</td>
</tr>
<tr>
<td>ReqIF.Description:</td>
<td>Longer description as formatted text, sometimes with a diagram.</td>
</tr>
<tr>
<td>Priority:</td>
<td>1_high</td>
</tr>
</tbody>
</table>

Supplier-Status:	
Supplier-Comment:	
OEM-Status:	to-evaluate
OEM-Comment:	

An attribute pair for each of the suppliers

An attribute pair for the OEM
Use-Case: Requirement Agreement using the HIS-Process

Requirement
- **ReqIF.Name:** Crisp Naming
- **ReqIF.Description:** Longer description as formatted text, sometimes with a diagram.
- **Priority:** 1_high

Supplier-Status:
- **Supplier-Comment:**

OEM-Status: to-evaluate
- **OEM-Comment:**

Requirement
- **ReqIF.Name:** Crisp Naming
- **ReqIF.Description:** Longer description as formatted text, sometimes with a diagram.
- **Priority:** 1_high

Supplier-Status: partly-agreed
- **Supplier-Comment:** Comments or questions of the supplier

OEM-Status: to-evaluate
- **OEM-Comment:**
Use-Case: Requirement Agreement using the HIS-Process

Requirement
- **ReqIF.Name:** Crisp Naming
- **ReqIF.Description:** Longer description as formatted text, sometimes with a diagram.
- **Priority:** 1_high
- **Supplier-Status:** partly-agreed
- **Supplier-Comment:** Comments or questions of the supplier
- **OEM-Status:** not-accepted
- **OEM-Comment:** Reactions and Answers of the OEM

Requirement
- **ReqIF.Name:** Crisp Naming
- **ReqIF.Description:** Longer description as formatted text, sometimes with a diagram.
- **Priority:** 1_high
- **Supplier-Status:** partly-agreed
- **Supplier-Comment:** Comments or questions of the supplier
- **OEM-Status:** to-evaluate
- **OEM-Comment:**
Use-Case: Exchange model-based specs between OEM and Supplier

OEM
- Requirement-Management
- System-Modelling

Supplier
- PLM/ALM
- Simulation

Standard ReqIF with
- SpecIF Vocabulary
- SpecIF Assertions
Use Case: Exchange model information between tools

1. Change a state diagram in SysML
2. Check consistency of the specification
3. Validate the behavior in a simulation tool
4. Generate code for an embedded controller
What is SpecIF?

• „**Specification Integration Facility“**

• SpecIF *adds* conventions to express meaning to known technical formats such as ReqIF or OSLC.

1. **Vocabulary** for Objects, Relations and Attributes

 \(\text{„Requirement“}, \text{„Actor“}, \text{„State“}, \text{„Event“} \ldots\)
 \(\text{„satisfies“}, \text{„reads“}, \text{„contains“}, \text{„triggers“} \ldots\)

2. **Logic Assertions**
 („First-order predicate logic“)

 \(\text{„An Actor satisfies a Requirement“}\)
 \(\text{„An Event triggers an Actor“}\)

→ SpecIF carries both the „Visible“ and the „Meaning“
SpecIF carries both the Visible and the Meaning

Medium/Format
(The Presentation)

original, loss-less

Notation
(The Visible)

abstracted

Integrated Model
(The Meaning)

Objects and Relations
(The Persistence)

Interrelates all elements of all model diagrams and all notations
Abstraction: All model diagram types (notations) consist of three fundamental model-element types*

<table>
<thead>
<tr>
<th>Model-element Type</th>
<th>BPMN Business-process</th>
<th>State-machine</th>
<th>System-composition</th>
<th>Organisation Chart</th>
<th>UML Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor</td>
<td>X</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>State</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Event</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Prof. Dr. Siegfried Wendt, Founding Director of the Hasso-Plattner-Institute, Potsdam: Fundamental Modelling Concepts
A complete specification needs also 'feature' and 'requirement'.

<table>
<thead>
<tr>
<th>Model-element Type</th>
<th>BPMN Business-process</th>
<th>State-machine</th>
<th>System-composition</th>
<th>Organisation Chart</th>
<th>UML Classes</th>
<th>Document Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor</td>
<td>X</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>State</td>
<td>(X)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Event</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Feature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Taking a model diagram, automatically identify model elements and their relations to build a semantic net.
Consolidate model elements from different diagrams

- Key to success is the abstraction using 5 fundamental model element types
- Impossible with 162 model element types in SysML and almost as many in BPMN
- Even within SysML the current tools fail to properly consolidate model elements from different model views
Summary: 4 steps to create an Integrated System Model

1. Identify
 Every element on a diagram
 Every line in a spread-sheet

2. Assign fundamental element type
 ■ Actor
 ● State
 ♦ Event
 ✺ Feature
 ✡ Requirement

3. Consolidate

4. Semantically Interrelate
 Component-070 contains Component-073
 Component-070 satisfies Requirement-4711
Add partial models step-by-step ... and use/deliver in known technical formats

Processes
System integration
Business objects
Annotations

BPMN Processes

Requirements
User Stories

UML/SysML/FMC
System models

Integrated System-Model

Integrated System-Model

http://specif.de

DOCX/PDF
WIKI
ALM/PLM
Reqs
OSLC
Linked Data
Example: Search, navigate and audit in a common context
Positioning ReqIF, OSLC and SpecIF

- **Types + Instances**
 - ReqIF
 - OSLC
 - SpecIF

- **Format → Syntax**
 - **Vocabulary for**
 - 1 Object Type (Requirement)
 - 0 Relation Types

- **Logic Assertions**
 - **Semantics**
 - Vocabulary for
 - n Object Types
 - m Relation Types

- **Vocabulary**
 - prostep ivip ReqIF Implementation Guide
 - oslc-rm

- **Semantics**
Status

- FMC: available
- SysML: available
- Interaction Room: available
- BPMN: available

Master Thesis at FhG IPK (Berlin)
Master Thesis at Paluno (Univ. Duisburg/Essen)
Master Thesis at HTW (Berlin) (starting 2017-10)

SpecIF
Open SE Models

Notation mapped to ...

ReqIF (XML)
SpecIF native (JSON)
OSLC RDF
linked-data
WIKI (Confluence)
Document (DOCX, PDF)

... mapped to Persistence
SpecIF Goals and Benefits

• Exchange model-based specifications between tools and organizations.
• Combine (formatted) texts and models from different tools.
• Search, navigate, and check in a common context.
• Manage the product lifecycle from the beginning („end-to-end“):
 • Overarching engineering-disciplines
 • Combining methods
 • Technology-neutral
 • Vendor-neutral
 • Schema-conforming
 • Standard-conforming
 • Open and cooperative
Literature

Details for further discussion
The eye sees the same – SpecIF adds interrelated model data

Creating the „Visible“
• Text editing and image „drawing“
• Brain and Discipline to build and keep it consistent

Partial Modelling
• Text editing and modelling per method

Model Integration
• Text editing and modelling per method
• Elements in all views are interrelated by a semantic net
A SpecIF data set contains both the types („model“) and the instances („data“ = „payload“)

SpecIF model with Hierarchy-, Object- and Relation-types

The types can be defined at runtime („dynamic model“)

SpecIF data (payload) with Objects and Relations

Hierarchical ordering of Objects (e.g. for convenient reading)
The discussed SpecIF Model with 5 Fundamental Model-element Types is proven for Model Integration.